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J. Phys. A: Math. Gen. 23 (1990) 5411-5439. Printed in the U K  

Vector coherent state theory of the non-compact 
orthosymplectic superalgebras: 11. Some selected examples 

C Quesnet 
Physique NuclCaire Thiorique et Physique Mathematique CP229, Universite Libre de 
Bruxelles, Bd du Triomphe, B1050 Bruxelles, Belgium 

Received 21 May 1990 

Abstract. The techniques, presented in the first paper of the present series, for determining 
the conditions for the existence of star or grade star positive discrete series irreducible 
representations of osp(P/ZN,W) ( P = 2 M  or 2 M  + l ) ,  and the branching rule for their 
decomposition into a direct sum of so( P)Osp(ZN, W )  irreducible representations, as well 
as for constructing explicit matrix realizations, are illustrated with a few selected examples. 
The latter include the most general irreps of osp( 1/2N, R), osp(2/2, R), osp(3/2, W ) ,  
osp(4/2, R), osp(2/4, W), and the most degenerate irreps of osp(2/2N, W). In addition, all 
the information necessary for dealing with other cases amenable to a full analytic treatment 
is provided. 

1. Introduction 

The purpose of the present series of papers is to construct explicit matrix realizations 
for the positive discrete series irreps of the non-compact orthosymplectic super- 
algebras osp(P/2N,R),  where P = 2 M  or 2 M + 1 ,  in o s p ( P / 2 N , W ) 2 s o ( P ) O  
sp(2N, W )  2 s o ( P ) O u ( N )  bases. Here we exploit the vector coherent state (vcs) and 
K-matrix general theory, expounded in the first paper of this series (henceforth referred 
to as I and whose equations will be quoted by their number preceded by I )  (Quesne 
1990c), to obtain detailed results for the star and grade star irreps of some low- 
dimensional superalgebras often encountered in physical applications. 

Some of the results presented in this paper were already derived by other methods. 
The branching rule for the decomposition of the osp( 1/2N, R) positive discrete series 
irreps into sp(2N, W) irreps and the matrix realization of the same in an osp(l/2N, W )  2 

sp(2N, R) 2 U (  N )  basis were recently determined by a raising operator technique 
(Quesne 1989). A matrix realization ofthe osp(2/2, R) irreps in an osp(2/2, R) 2 so(2)O 
sp(2, R) 2 s0(2)Ou( l )  basis was built by direct resolution of the supercommutation 
relations (Balantekin et a1 1989). The branching rule for the decomposition of the 
osp(4/2, R) irreps into so(4)Osp(2, R) irreps was obtained by constructing the lowest- 
weight states of the latter in a super Fock space (Schmitt et a1 1989). 

Such results, however interesting they may be, always provide a partial solution to 
the problem in hand. The raising operator technique indeed proves rather tedious to 
extend to other superalgebras than osp( 1/2N, R). The supercommutation relation direct 
resolution is restricted to very low-dimensional superalgebras. If the explicit construc- 
tion of lowest-weight states enables the determination of branching rules, a lot of extra 
work is still needed before getting the corresponding matrix realizations. 
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On the contrary, the vcs  and K-matrix combined theory exploits the full power of 
Wigner-Racah tensor calculus for the so( P )  0 U( N )  subalgebra. It therefore provides 
a unified and systematic procedure for determining branching rules. Moreover, once 
the latter have been obtained, it is a rather simple matter to derive explicit matrix 
realizations. The only practical limitation to the applicability of the method lies in the 
necessity for a detailed knowledge of some s o ( P )  and U (  N )  Racah coefficients. 

This paper is organized as follows. In section 2, the branching rule and a matrix 
realization are determined for the osp( 1/2N, R) star irreps. In sections 3 and 4, the 
same problems are considered for the osp(3/2N, R) and osp(4/2N, R) star irreps, 
respectively. After some general considerations valid for arbitrary N, the cases of 
osp(3/2, R) and osp(4/2, R) are solved in detail. In  section 5 ,  the osp(2/2N, R) star 
and grade star irreps are reviewed with special emphasis on the most degenerate irreps 
for arbitrary N and on the osp(2/4, R) general irreps. Finally, section 6 contains some 
concluding remarks. 

2. The osp(l/2N, R) superalgebras 

The even part of the osp( 1/2N, R) superalgebra is the sp(2N, R) algebra, generated 
by the operators D i ,  D" and E,', i, j = 1 , .  . . , N,  where E!', i, j = 1 , .  . . , N, span the 
stability subalgebra U (  N ) .  The odd part of osp( l /2N,  R) has basis elements K ,  = iF: 
and F' ,  i = 1, .  . . , N (Quesne 1989, 1990a). The osp(l/2N, R) positive discrete series 
irreps are characterized by [a) = [Q,n, . . . Q N ) ,  where a,, Q,, . . . , R, are integers 
satisfying the inequalities Q, 3 R 2  3. . .a f l N  > N. Their lowest-weight state belongs 
to the lowest-weight u ( N )  irrep {a} = {n,n,.. . Q,} contained in their carrier space. 
In the present section, we shall examine under which conditions these osp(l /2N,  R) 
irreps are equivalent to star representations and we shall determine the branching rule 
for their decomposition into sp(2N,R) irreps, as well as the u(N)  reduced matrix 
elements of the odd generators between two lowest-weight U (  N )  irrep basis states. 

From (13.1) and (I3.2), it follows that the osp( l /2N,R)  vcs  are parametrized by 
the complex variables z ,  = z,,, i, j = 1, .  . . , N, and the Grassmann variables e,, i = 
1, . . . , N. The vcs  space therefore consists of functions 'P( t, e), which are holomorphic 
in z,,, polynomials in e,, and take vector values in the intrinsic subspace, i.e. in the 
U (  N )  irrep {Q} carrier space. The vc s representation of osp( 1/2N, R) depends on the 
intrinsic u ( N )  generators E,', as well as on the variables z,,, e,, and the corresponding 
differential operators V" = (1 + 6 , , ) d / d ~ , ~ :  a' = 8/80,. In  Quesne (1990a), it is given in 
explicit form for the sign choice K ,  = F , .  

Both the odd generators K ,  and the Grassmann variables 0, are components of 
irreducible tensors 6 and 5 ,  transforming under the U (  N )  irrep { 10). The Q polynomials 
considered in section 4 of I, are characterized by the u ( N )  irrep { p }  = {l'O}, where i 
may run over the set {0,1, .  . . , N } ,  and by the row label y, which may be chosen as 
the U (  N )  weight ( i , i 2  . . . i , )  with 1 i ,  < i ,  <. . . < i ,  s N.  They are denoted by Q{i,'o),fl(s) 
and their phase is fixed by choosing the highest-weight polynomial as 

Q : ; : O ) , ) ( ~ )  = e, .  . . e,e,. (2.1) 

According to (I4.21), orthonormal V B B  basis states reducing the stability subalgebra 
u ( N )  are given by 

~In){l'O}(w){1.}p{h}x, = [P'''(Z) x [ Q ' l J " ' ( 5 )  x l{Q})]{wy (2.2) 
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where the polynomials P are defined in (14.15), /{a}cu) denotes an  intrinsic subspace 
basis state, and  the labels w l ,  w 2 ,  . . . , w N  may take all the values satisfying the relations 

hi h, c w , =  c a,+/ 
i =  I , = I  

(2.3) 

and 

n, S U I  S R I  + 1 (2.4) 

Since the irrep (1‘0) is completely determined by { U }  through (2.3), it may be dropped 
and  the U (  N )  VBB basis states written in shorthand notation as / ( U ) {  v } p { h } x ) .  

The K transformation maps the VBB basis states (2.2) onto vcs states classified by 
the following labels: 

R, s w, G min(R, + 1 ,  u , - ~ )  i = 2 ,  . . . ,  N. 

All X ( { w } )  submatrices are one dimensional. 
As explained in I ,  to write the recursion relation satisfied by ? l X ’ ( { w } )  in explicit 

form, we need the values of the reduced matrix elements of 5, defined in (15.14) and 
(15.24). Taking (2.1) into account, we obtain 

(2.6) ({ 1 ~+~0}1/51~{ 1’0)) = m 
and 

( (w ”w ’ }  II 5 / I  ( W ) { 0 h J H  

where 

{ U }  = (52 + A ( ” (  p 1  . . . p / ) }  (2.8) 

and A(‘)(pl . . . p / )  denotes a row vector of dimension N with vanishing entries 
everywhere except for the components p1 , . . . , p / ,  which have value unity. The U( N )  
Wigner and  Racah coefficients required to evaluate (2.6) and (2.7) have been taken 
from Biedenharn and  Louck (1968), and Le Blanc and Hecht (1987), respectively. 

By taking (2.7) and the results of appendix 1 into account, it can be easily proved 
that the recursion relation ( 1 5 . 1 1 )  for 7EXt ( {w} )  can be written as 

{ U ‘ }  = {R + A ( I T 1 ’ (  p1 . . . pmipm+l . . . p , ) }  

(2.9) 
where on the right-hand side s and k run over the range 1 , .  . . , 1. The sum over s can 
be performed by using the complex function residue theory (Le Blanc and  Rowe 1987, 
Quesne 1990b), so that the recursion relation finally takes the simpler form 

X X + ( { U  ’}I = * (R, - i + 1 ) 

(2.10) 
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In (2.10), the lower sign choice can be immediately ruled out. It would indeed lead 
to the relation 

YfXL({R+A(il(l)}) = -RlYlYC({R}) < O  (2.11) 

XX' being normalized in such a way that XYl-({R}) = 1. Hence, the adjoint relation 
in sp(2N, R) can be extended to an adjoint relation in osp(l /2N,  R) in a single way 
corresponding to K ,  = F:, if we impose that the irrep [R) be equivalent to a star 
representation. 

For the upper sign choice, the solution of (2.10) can be written as 

XXA({w 1) = (n (apA - P k  + 1 )) ( n (apA + RPq - P k  - Pq + 2) (apk + RPCi - PL - Pq + 1 1 - 1 )  
k h < q  

(2.12) 

where { U } ,  defined in (2.8), satisfies the conditions (2.4). Since the right-hand side of 
(2.12) is always positive, all the VBB basis states ~ ( w ) { O } { w } x )  are mapped onto 
(non-vanishing) vcs basis states. The branching rule for the decomposition of the star 
irreps [a) into sp(2N, R) irreps ( U )  is therefore given by (see also Quesne 1989) 

nl+ I m i n ( n 2 + l , w l  1 min(R +l.w, I I 

w , = n ,  w z = n 2  
1 . . .  O ( w ) .  (2.13) 

w , = R ,  
.1 c 

All such irreps are typical (Scheunert 1979). 
Finally, by setting 

X ( { w } )  = X L ( { w } )  = [Yl?l-({w})]l'* (2.14) 

and taking (2.7) and (2.12) into account, the u(N) reduced matrix elements (15.23) of 
the odd generators 6 between two lowest-weight u ( N )  irrep basis states become 

(((fm"'1il r(6) l l(w){OHw}) 

= ( - l ) m  (a, - i +  1) n (RI  +apr. - P k  - i + 2 ) ( 0 ,  -RpA + P k  - i -1)  [ ( k  

x [ (R,  +apA - p k  - i +  l ) ( R ,  -api + P k  - i ) ] - '  (2.15) 

where { w }  and { U ' }  are defined in (2.8). By combining this relation with an appropriate 
u ( N )  Wigner coefficient (Biedenharn and Louck 1968), it is easy to get the matrix 
element of y (  F:) between two sp(2N, R) irrep lowest-weight states. The result of such 
a calculation agrees with the formula obtained by means of a raising operator technique 
(Quesne 1989). 

3. The osp(3/2N, R) superalgebras 

3.1. General remarks 

The even part of the osp(3/2N, R) superalgebra is the so(3)Osp(2N, R) algebra, where 
sp(2N, R) is generated by DL, D", E,', i, j = 1, .  . . , N, and so(3) by B ' ,  B and C. Here 
we have dropped index a, which only takes the single value 1. I t  is convenient to 
renormalize B A  and B so as to obtain the operators 

L+ = a B A  L _ = J Z B  L,= c (3.1) 
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satisfying standard angular momentum commutation relations 

[Lo ,  L * l =  *L* [ L + ,  L ] = 2 L 0 .  (3.2) 

The odd generators are I ,  = *Gr, K ,  = *F: ,  H ,  = * ( J ' ) & ,  and G', F' ,  J ' ,  I = 1, .  . . , N. 
The first (respectively, last) three are the components @,, (respectively, 3,;) of an 
so(3)Ou(  N )  irreducible tensor @ (respectively, 3 )  transforming under the irrep [ 1 1 0  
{lo} (respectively [1]0{0-  1)). Here m = 1, 0, -1, i (respectively, r) denotes the u ( N )  
weight ( 0 . .  . O l O . .  . 0) (respectively, ( 0 .  . . 0-  1 0 . .  . O ) )  with 1 (respectively, -1) in 
position i, and 

61, = 4 60, = K ,  4-1, = - H ,  

3 1 1  -=(-1) 'J '  30;= (-1)'F' XI ;= (-  l ) ' - 'G ' .  
(3.3) 

The positive discrete series irreps of osp(3/2N, W) are characterized by [ZR) = 
[ZO, . . . O N ) ,  where 2,  R I ,  . . . , R, are integers satisfying the inequalities E 2 0, and 
C l ,  2 Cl, a . . ,a CIN > N. The corresponding vcs are parametrized by the complex 
variables zlJ = z,,, i, j = 1, . . . , N, and the Grassmann variables vI, e,, T , ,  i = 1,. . . , N. 
The latter (and the corresponding differential operators) are the components 5,, 

(respectively, b,,,;) of a [ 110  {lo} (respectively, [ 1 1 0  (0  - 1)) irreducible tensors (respec- 
tively, b ) ,  

51, = $0, = el 5-1 ,  = -7, 

(3.4) 
b , ; =  ( -1) '3 /d7 ,  bo;= (-l) 'd/d6, b _ , ; =  ( - l ) l - ld/dvt  

in accordance with (3.3). Comparison with (16.8) and (16.9) shows that the phase 
factor appearing in the latter is u3 = -1. The vcs representation of osp(3/2N, W )  also 
depends on the intrinsic generators 

L+ = JIBL n.-=V?iB P L O = @  (3.5) 

and E l J ,  i, j = 1 ,  . . . ,  N. 
The Q polynomials are characterized by an so(3) irrep [ A ] ,  a u(N) irrep { p }  = 

{ p l p 2 .  . . p N } ,  an additional label K,  and a row index y. Here 3 2 p I  3 p2 3. . .a p N  a 0, 
[ A ]  may run over those so(3) irreps contained in the u(3) irrep {b}={blii2b3}, K 

distinguishes between repeated [ A ]  irreps in {G} and is needed only for N 2 4  
(Moshinsky et a1 1975), and y may be taken as m ( p ) ,  where m = A ,  A - 1 , .  . . , -A, and 
( p )  denotes a Gel'fand pattern of { p }  (Gel'fand and Tseitlin 1950). Whenever K is 
not needed, the polynomials can be easily constructed from Q[ll{lo)(s) = B by sO(3)O 
U( N )  couplings, followed by an appropriate normalization. The highest-weight second- 
degree polynomials, for instance, can be written as 

V f  

or, in explicit form, 

Qk:f:'(s) = elvl  (3.7) 
and 

Q l ' , l p ( s )  = vzuI Q[oIl';"(5) = 3-111( 61 62 + VI 72 + 71 v*) if N 2 2 .  (3.8) 

Comparison of (3.8) with (16.12) shows that the phase factor appearing in the latter 
is w 3 =  1. 
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By taking (3.7) into account and writing the components of the intrinsic irreducible 

m "1 rn = 1,0, -1 (3.9) 

where [II = --[I+/&! and 11-' = iL-/d2, i t  can be easily proved that r \"(DL) takes the 
form (16.10) with u3 = -& or, equivalently, 

r y ) ( D - )  = J ~ Q [ ' ] ' ? O ) ( ~ ) .  5 .  (3.10) 

The reduced matrix element of r y ' ( D " ) ,  appearing in the recursion relation (15.11), 
can therefore be written as 

tensor as 
T['1'01 =[I 

("I(w"w'} llc0)u-) II t"[5'1""){0}""}) 

= -[2(2A'+ l ) E ( E +  1)/(2A"+ l ) ] '  'U(E16'A'; = A " )  

X U (  {a}{ p"}{ U' } {  26}; { w "} ["{ p '}[I) ( K '[A ']{ p '} 1 )  Q['1{20 '( 5 ) / /  K " [  A "I{ p"} )  

(3.11) 

where t ' =  ~'[h']{p'}[' ,  t " =  ~"[,i"]{p"}[", and, as a result of (3.6), 

( K ' [  A ']{ p ' }  / /  Q['1'20)( 5) / /  K " [  A "]{ p " } )  

1 -_  - 1 U(11A'A"; 1~)U({10}{10}{p'}{p"}; {20}{;}) 
Jz [ X I { ; )  

x ( K '[A 'I{ P, '1 II 5 II K' [ x 1 { ; }) ( K' [ x 1 { ; 1 I /  5 I /  K "[ A "I{ I* '7 1. (3.12) 

On the right-hand side of (3.11) and (3.12), the first U coefficient is an so(3) Racah 
coefficient while the second one is a u(N) Racah coefficient. 

It essentially remains to determine the reduced matrix elements of 5 defined in 
(I5.14)t. Since they depend on the explicit form of the Q polynomials, they have to 
be calculated for each N value. In  the next subsection, we detail the N = 1 case. 

K 

3.2. The osp(3/2, R) superalgebra 

In the osp(3/2, R) case, the index i takes just the single value 1, and so may be dropped. 
As in (3.6), the Q polynomials can be constructed by successive so(3) couplings (since 
the u(1) couplings are trivial). Their highest-weight component can be written as 

QPl'o'(5)  = 1 Qyy5) = Q \ I ~ { ~ ) ( S )  = ec  Qp1'3'(5) = - T b .  (3.13) 

The non-vanishing so(3) reduced matrix elements of 5 between two Q polynomials, 
as defined in (15.14), are then given by 

( [ 1 1 { 1 ~ ~ ~ ~ ~ ~ [ 0 1 { 0 ~ )  = 1 ([11{2~l~~Il[11{1~) = A  ( [ 0 1 { 3 ~ ~ / ~ l l [ ~ 1 { 2 ~ )  = ~'3. (3.14) 

Note that the phase of the Q polynomials has been chosen in such a way that all these 
reduced matrix elements are positive. 

In shorthand notation, the orthonormal V B B  basis states reducing the stability 
subalgebra so(3)@u(l)  may be written as 1 [ t ] ( w ) { h } x ) ,  since the u(1)  irreps { p }  and 
{ v} are determined by { U }  and { h }  through the relations 

p = w - - R  v = h - w  (3.15) 

t Theso(3) phase $([(]),appearingin the reduced mat r ixe lemenrofbgiL.en in  (15 .25 ) , i sdehnedas  $ ( [ ( I )  = 5. 
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the so(3) irrep [ A ]  is fixed by { p } ,  and hence by {a}, as shown in (3.13), and all 
couplings are multiplicity free. The allowed irreps [ 5 ]  and ( w )  are listed in columns 
1 and 2 of table 1, and the conditions for their existence are displayed in column 5 of 
the same table. The latter result comes from the coupling rule of the angular momenta 
E and A to total angular momentum 5. 

Since their rows and columns are labelled by t = [h]{p}, all Yl([5]{w}) submatrices 
are one dimensional. The recursion relation (15.1 1) satisfied by XYl'([~](w}) is easily 
written down because all reduced matrix elements only involve so(3) Racah coefficients. 
We obtain altogether thirteen equations, listed in appendix 2 .  Since the number of 
equations greatly exceeds the number of unknowns, of which there are only seven, the 
calculations can be easily cross-checked. 

From the results of appendix 2, it is obvious that no positive semi-definite solution 
can be obtained for all YLYL'([(]{w}) submatrices when the lower sign is chosen in the 
adjoint relations for the odd generators. For the upper sign choice, we get the solution 

X X t ( [ E +  l]{R+ l}) = R -  z 
YLX+([ E - 1]( R + 1)) = n + z + 1 

YlX'( [E - 1 ] { R + 2 ) )  = ( + 1 ) (R + E + 1 ) 

XYIL([E]{R+ l } ) = R + l  

Ym+( [ E + l]{R + 2)) = (n + 1 )( n - 5 )  

XXt([E]{R + 2)) = n-'(n + l ) ( R  - E)(R + 3 + 1) (3.16) 

XX'([E]{R + 3)) = (R + 2)(R - Z)(R + Z + 1) 

if and only if the condition 

R > E  (3.17) 
is satisfied. Whenever equation (3.17) is fulfilled, and only in such a case, the irrep 
[En)  is therefore equivalent to a star representation. 

From (3.16), it is clear that if R > Z ,  then all VBB basis states 1[5](w){w},y)  are 
mapped onto vcs basis states. On the contrary, as shown in column 6 of table 1, if 
R = E ,  then four V B B  basis states are mapped onto the null vector whenever 5 # 0 .  
The branching rule for the decomposition of [ER) into so(3)Osp(2, R) irreps [ 5 ] 0 ( w )  
results from combining the V B B  and vcs conditions listed in columns 5 and 6 of table 1. 

As a final point, i t  is an easy matter to obtain the so(3)Osp(2, R) (triple) reduced 
matrix elements of the odd generators Z = (6, 3 )  from (I5.22), (15.23), (15.35), (15.36) 
and a relation similar to (2.14). They are listed in appendix 3 for the generic case 
R > E > 0. These results also apply to the cases where E = 0 or = 5, provided only 
the allowed vcs basis states are retained. 

Table 1. Branching rule for the decomposition of an  osp(3/2,iw) star irrep [ E n )  into 
s o ( 3 ) O s p ( 2 ,  iw) irreps [(]@(U). 

~~ 

51 (U) [ A ]  { p )  L B B  conditions L C  s conditions 
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4. The osp(4/2N, R) superalgebras 

4.1. General remarks 

The even part of the osp(4/2 N, R) superalgebra is the so(4) 0 sp(2 N, R 1 algebra, where 
sp(2N, R) is generated by D i ,  D", E,', I ,  j = 1 , .  . . , N, and so(4) is spanned by AT2, 
A", C,' ,  CI2, C 2 ' ,  and CZ2, or, alternatively, by the generators 

SI, = A;, 

s,+ = c,' 
S I -  - A I ?  - 

s2- = c2I 

SI" = ;( c,' + c,z) 
S,, = ;( c, - CZ2) 

(4.1) 

of the isomorphic su(2)0su(2)  algebra. Here each triple of operators SI+,  SI-, SI,, 
and S2+, S,-,  S,, satisfies commutation relations similar to (3.2), while any operator 
of the former set commutes with any operator of the latter. The odd raising generators 
I = *G,,, H," = a = 1,2,  i = 1 , .  . . , N, are the components @ , , , , 2 ,  of a [lo]@ 
(10)- (4, i)O{lO} irreducible tensor @ with respect to so(4)Ou(  N )  = [ s u ( 2 ) 0 s u ( 2 ) ] 0  
U( N ) ,  where m , ,  m2 = ;, -+, and i = 1 , .  . . , N: 

a'. 

(4.2) 

In the same way, the odd lowering generators G"', Ja' ,  a = 1,2,  i = 1 , .  . . , N, are the 
components 3,, ,2; of a [10]0{0- l } = ( f , ~ ) @ { O -  1) irreducible tensor 3, where m , ,  

-1 -1 
2 - 2 ,  2 ,  and i = l ,  . . . ,  N: 

1 

31/* 1 2 ;= (-1)lJ1' 4 l , 2  - I / >  ;=(-1)'Jz' 
I (4.3) 
~ - ~ , 2  , , 2  ;=(-1) 'G2'  3-112 - 1 1 2  ;=(- l ) ' - 'G ' I .  

The positive discrete series irreps of osp(4/2 N, R) are characterized by [Sa) = 

[EIE,R, . . . Oh,), where E , ,  E,, R,, . . . , R, are integers satisfying the inequalities 
E, 2 IE,l, and R 1 2  R2 2. . . Z  R, > N. The lowest-weight so(4) irrep [E1E2] can also 
be denoted by (SI,  S,), where SI = + ( E l  + E2) and S2 =;(E, -E2) specify the irreps of 
the isomorphic su(2)O su(2) algebra and are simultaneously integer or half integer. 

The corresponding vcs are now parametrized by the complex variables z ,  = z,~, i, 
j = 1 , .  . . , N, and the Grassmann variables uUI, T , ~ ,  a = 1,2, i = 1 , .  . . , N. In  accordance 
with (4.2) and (4.31, the latter (and the corresponding differential operators) are the 
components B , , , ~ ~  (respectively, b,,,,;) of a [10]0{1O} = (4, ;)0{16} (respectively, 
[10]0{0-  1}= (f, ;)O{O- 1)) irreducible tensor 5 (respectively, b): 

- 
5112 112 I = 5 1 ~ 2  - I / ,  I - U?, 

(4.4) 

1 - 1  I f  
b_ l /*  I , 2  ;= ( - l ) '$  b-I,, - 1 / 2  ; = ( - l )  a I 

Comparison with (16.8) and (16.9) shows that the phase factor appearing in the latter 
is w 4 =  -1. The vcs representation of osp(4/2N, R) also makes use of the intrinsic 
generators E,', i , j  = 1, . . . , N, and S I + ,  SI-, SlO,  S 2 + ,  S 2 - ,  Sz0, the latter being defined 
in terms of Ai2, A", C1', C I 2 ,  C,', and 

The Q polynomials are characterized by an so( 4) = su( 2 )  0 su( 2) irrep [ A ]  = [ A  I A? ]  = 
(k,, k 2 ) ,  a U( N )  irrep { p }  = { p l p 2 .  . . p \ } ,  a set of two additional labels K ,  and a row 
index y. Here 4 3 p I  5 p2 5. . .z p h  a 0, [ A ]  may run over those so(4) irreps contained 

by relations analogous to (4.1). 
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in the u(4) irrep { b }  = { ~ 1 ~ 2 & 3 b 4 } r  k ,  and k2 are given in terms of A I  and A >  by 
k ,  =:(A, + A z ) ,  k,  = $ ( A ,  - A 2 ) ,  K distinguishes between repeated [ A ]  irreps in {G} and 
is needed only for N 5 3 (Quesne 1976, 1977), and y may be taken as m I m 2 ( p ) ,  where 
m, = k , ,  k ,  - 1 , .  . . , - k , ,  m2 = k 2 ,  kz - 1 ,  . . . , - k 2 ,  and ( p )  denotes a Gel’fand pattern 

Whenever K is not needed, the polynomials can be constructed by s u ( 2 ) 0 s u ( 2 ) 0  
u ( N )  couplings, followed by an  appropriate normalization, in a way similar to that 
shown for osp(3/2 N, W) in (3.6). The highest-weight second-degree polynomials are 
given by 

of { P I .  

(4.5) 

and 

Q h w  h w  ( 5 )  = ( + 1 2 g 1 1  
[2011120)(5) = Qhrl ( 1  1)1120) h w  

(4.6) 

Comparison of (4.6) with (16.12) shows that the phase factor appearing in the latter 
is w , = l .  

By taking (4.5) into account and noting that the components of the intrinsic 

if N >  1. Q[OOI { l 2 0 l  (5)  = Qco,oi(1‘01 hw (5)  = +( ( T I  I 7 2  I + c 2  1 7 2 I - t  71 ’ VI 2 + 71 a 2 2 )  
h w  

are irreducible tensors fllll{O’ = T‘130)‘01 and f [ I - l ] { o l  = f ( o , l ) { o 1  

m = 1,0,  - 1  (4.7) ~ ~ l . O ’ i 0 )  = B;:!10’ = s 
mO SI, 2 m  

it can be easily proved that r:O’(D-) takes the form (16.10) with u 4 =  - 2 d  or, 
equivalently, 

(4.8) 
The reduced matrix element of ry ) (DL) ,  appearing in the recursion relation (15 .1  l ) ,  
can therefore be written as 

r:o)(D”) = 2[~‘130’{20)(5). s, + Q ( O , I ) { ? ~ ) ( ~ ) .  

( ~ ’ [ 5 ‘ 1 ( 4 { O I I w ’ }  I! cow)  II t”[5‘1“’’”}”‘’}) 
= -2U({R}{p”}{~’}{20}; {0~”}5”{p’}5’){[(2k;+ 1)Sl(SI +1)/(2k;+ 

x U(S, l s ’ ,  k ; ;  SI k l ) (  K ’ ( k i ,  k ~ ) { p ’ } ~ ~ Q ‘ 1 ~ o ) ‘ 2 0 ’  ( e ) ! !  K”(k7, k;){CL’’}) 

X ( K ’( k ; ,  k ; ) {  p’ }  1 1  
+[(2ki+ 1 ) S 2 ( S 2 +  1)/(2k,”+ 1)]1’2U(S21s~ki;  S2k,”)  

‘1201( 5 )  11 K ” (  k ; ,  k,”){ p ” } ) }  (4.9) 
where t ’ =  ~ ‘ [ A ’ ] { p ’ } l ’ ,  t ” =  ~”[A”]{p”}l”, [ A ’ ] = ( k { ,  k i ) ,  [ A ” ] = ( k ; ,  k i ) ,  [ 5 ’ ] = ( s ; ,  si), 
and 

( K ’ (  k’, , k i ) {  p ’ }  / /  Q(1’0)i201(5) 11 K ” (  k ; ,  k i ) {  p ” } )  

x U ( { 1 OH 1 O h  ’I{ /J ”1 ; I2OHb 1) 
q ( K ’ ( k l ,  k i ) {P ’ ) l l~ I l4& I i 2 ) i r C i H  

K 

x (ail, i 2 ) { b } l l 5 I l K Y K  k , ” ) { F ” l )  (4.10) 
and the reduced matrix element of Qco-l”20) ( 5 )  is given by a relation similar to (4.10). 
The right-hand sides of (4.9) and (4.10) contain a U (  N )  Racah coefficient in addition 
to some standard su(2)  Racah coefficients. 
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As in the osp(3/2N, R) case, it remains to determine the reduced matrix elements 
of e t .  In the next subsection, we detail the N = 1 example. 

4.2. The osp(4/2, R) superalgebra 

In (4.2)-(4.4), index i now takes the single value 1 and may therefore be dropped. 
The Q polynomials can be constructed by su(2)Osu(2) couplings and subsequent 
normalization. Their highest-weight component can be written as 

~ [ 0 0 1 { 0 ) ( ~ )  = Q ~ ~ O J { o ) ( 5 )  = 1 Qbtpl‘”(5) = Q:;? 1 2  ‘1’2 1 ’ 2 i { l }  ( e )  = ( T I  

The non-vanishing su(2)Osu(2) reduced matrix elements of e between two Q poly- 
nomials are then given by 

(4.12) 

As a matter of fact, the phase of the Q polynomials has been fixed so that the 
non-vanishing reduced matrix elements ( ( k ; ,  k; ) {p  + l}~le~l (k l ,  k , ) { p } )  will be positive 
whenever ( k , ,  k2)  is the highest-weight su(2)Osu(2) irrep corresponding to { p } .  

In shorthand notation, the orthonormal VBB basis states reducing the stability 
subalgebra so(4)@u( l )  may be written as ~[AlA2][5,52](w){h}~), since the u(1) irreps 
{ p }  and {v} are determined by { U }  and { h }  through (3.15) and all couplings are 
multiplicity free. Contrary to what happens in the osp(3/2,R) case, the so(4) irrep 
[A,h,] is not fixed by { p } ,  as equation (4.11) shows that both [11]=(1,0)  and 
[l -11 = (0, 1) are associated with (2). The allowed irreps = ( s i ,  s 2 )  and ( U )  are 
listed in columns 1 and 2 of table 2, and the conditions for their existence are displayed 
in column 5 of the same table. The latter result from the coupling rules of the angular 
momenta SI and k l ,  S2 and k ,  to the total angular momenta s1 and s 2 ,  respectively. 

Since their rows and columns are labelled by t = [A ,A , ] {p} ,  all X([51&]{w}) sub- 
matrices are one-dimensional, except for X([ ElZ2]{i2 + 2 } )  which is two-dimensional 
for 5 ,  tt 1E21. In the latter case, we shall abbreviate t by t = [ l l ]  or [ l  -11. 

The recursion relation (15.1 1) satisfied by 7tX’( [ ( l~2]{w})  only depends on some 
su(2) Racah coefficients and is therefore easily written down. There are altogether 
forty equations, which have to be satisfied by sixteen unknowns. Since there is again 
no positive semi-definite solution for the lower sign choice in the adjoint relations for 

t The so(4)  phase appearing in (15.25) is defined as (L([5]) = cL(s,, s 2 )  = s, + s? = 6, 
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Table 2. Branching rule for the decomposition of an osp(4/2, R )  star irrep [21E:zR)  into 
so(4)Osp(2,  iw) irreps [[1[2]@(wi. 

[€IC21 (U) [A,A,] { p )  V B B  conditions vcs conditions 

[E:,E2] 
[El  + 1 q  
[ElE2+ 11 
[E,E2- 11 
[E l  - 1 4  
[E ,+ lE : ,+ l ]  
[E,  + I f ,  - 1 ] 
[EIS2]  

[ 3 , - 1 E 2 + 1 ]  
[El  - lE2  - 11 
[El  + 1E2] 
[EIE,+ 11 
[E1E2- 13 
[El  - 1%] 
[' r ] 

-1-2 

f Condition valid for eigenvalue d ,  . The latter does not exist whenever E l  = S 2 ,  -E2, 
i Condition valid for eigenvalue d 2 .  

the odd generators, we shall restrict here to the upper sign choice. In such a case, we 
obtain the solution 

r l x + ( [ E : ,  * IE:,]{R + 1)) = R +  1 F (El + 1) 

YlYL+( [ E 1 + 1 z2 * 1 I( R + 2)) = (0 - S 1 ) (R F E2 + 1 ) 

YlY17([El -1E:,*l]{n+2})=(n+51+2)(nTE*+l) 

( ?lYlT( [ 1 S 2 1  {a+ 2) 1 ) [ 1 = 1 I[ 1 r 1 ] 

YlYl' ( [E 1 S * + 1 ] { 0 + 1 } ) = R 'F E 2 + 1 

= (2f l -1[2R(R + l ) ( R  + 2 )  - (a+ l ) C l ( S l ,  Ed +2CZ(SI, 3 1  (4.13) 

( ~ ? ~ t ( [ ~ l ~ 2 ] { ~ + 2 } ) ) ~ l l ~ ~ l  -:,I= - ( 2 a ) - l ( R +  1)[c12(zl, E,) -4Cz2(E:,, S:2)]"' 

YIYlt([El* lS2]{R+3))= ( R +  1 ) - ' ( 0 + 2 ) [ R +  1 +(3 ,+  l ) ] ( R - 2 , +  l ) (R+E: ,+  1) 

XX'( [ ElS2 * l]{R + 3)) = (R + l ) - ' ( R +  2)(R - E l)(R + El + 2)(R 

%%'([EIz2]{R +4}) = (a+ 1)-'(a +3)(R - s l ) ( n  +SI +2)(R - S2-b l)(n +E:,+ 1) 

22 + 1) 

if and  only if the condition 

RaS, (4.14) 

is satisfied. In (4.13), 

Cl (S1 ,  E J  = El(El  +2)  + E*, C,(E,, 5 2 )  = (SI + 1)E2 (4.15) 

are the eigenvalues of the two so(4) Casimir operators corresponding to the irrep 
[z1E2]. To check that the 2 x 2 matrix YLX'([ElZ2]{R+2}) is positive semi-definite 
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whenever (4.14) is fulfilled, it is sufficient to show that its trace and its determinant 
are not negative. From (4.13) and (4.14), it follows that 

tr XX' ( [S~E~]{R+~})  = ~ - ' ( n +  1 ) [ 2 ( ~ +  I )*  - (E, + I ) *  - s~~ - 13 3 o 
(4.16) 

det YlYl'([ElZ~]{R+2}) = K ' ( Q + 2 ) [ ( n +  1)2 - (E l  + l) '][(R+ 1 ) 2  - E22] 3 0. 

Whenever condition (4.14) is satisfied, and only in such a case, the irrep [EIE2R) is 
therefore equivalent to a star representation. 

If R >  E , ,  then all the VBB basis states ~ [ A l A 2 ] [ ~ l ~ , ] ( ~ ) { w } x )  are mapped onto vcs 
basis states. For = [E1E2], ( w )  = ( n + 2 ) ,  and El  # lE,l, it is necessary to determine 
the matrices Yl([ElE2]{R+2}) and Yl-'([ElE2]{R+2}) by diagonalizing the 2 x 2 
matrix Yl9"'([~:,E2]{R+2}) and using (15.16) and (15.17). The eigenvalues ofthe matrix 
are given by 

(4.17) dl,, = (2R)-'{(R + 1)[2R(n + 2) - Cl(El ,  S,)] * A} 
where d ,  (respectively, d,) corresponds to the + (respectively, -) sign, and 

A={(R+1)2[C12(El ,  E2)-4C2,(El, E,)]+4C*2(El ,  E2)} I / 2  . (4.18) 

The (real) unitary matrix U converting YlYlt([SlE2]{Cl+2}) to diagonal form can be 
written as 

-cos 6 s i n 4  
sin 4 cos 6 " = (  (4.19) 

where 

COS 6 =(a+ l){2A[2C2(El, S2)+A]}-"'[CI2(E,, Z:2)-4C22(El, Z2)]1'2 
(4.20) 

sin 4 = (2A)-'/2[2C2(E,, E.2)+A]1'2. 

Note that, when El  = *E2, the matrix YlYl'([E,ZJ{R + 2)) is one dimensional and 
given by 

(4.21) 

hence it coincides with d 2 ,  as given by (4.17). 
If R = E, ,  then, as shown in column 6 of table 2, eight linear combinations of the 

sixteen VBB basis states l[Alh2][ ~ l ~ z ] ( w ) { ~ } x )  are mapped onto the null vector whenever 
z1 # + E 2 ,  *E2+ 1. For [[,&I = [E,E2] and ( U ) =  ( n + 2 ) ,  the eigenvalue d, vanishes, 
so that only the eigenvector of XYl'([E,E2]{R+2}) corresponding to 

(4.22) 

has to be retained whenever El  # lE,1. According to (15.18), (4.15), (4.19) and (4.20), 
it is given by 

YlYP( [ E , f z , ]{a + 2)) = a-'( + 2) (R - E ')( n + E ' + 1) 

c 

d ,  = El-i(El + l ) [EI(E'  + 1) -E22] 

11 [ E 'EJ(E ' + 2){ E, + 2}x) 

= [2C,(E,  , E2)]-l/2{ -[ (E' - EJ( E' + E2 + 2)]'/2 

x ~[11][~'S,](E,+2)(E'+2}x) 

+ [(El + E,)( E I - E, + 2)]"21[ 1 - 1][ E 1 E2]( El + 2){ El  + 2 ) ~ ) ) .  (4.23) 

In general, the branching rule for the decomposition of [ElE2R) into so(4)Osp(2, R) 
irreps is obtained by combining the VBB and vcs conditions listed in columns 5 and 
6 of table 2. In particular, when Cl = El  = *E2, it results from the remark following 
(4.21) that no state with [t1t2] = [EIS2] and (U) = ( n + 2 )  is allowed. 
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In a recent work (Schmitt er a1 1989), the branching rule for the decomposition of 
[E,S2R) into so(4)Osp(2 ,  R) irreps was determined by constructing and ortho- 
normalizing the lowest-weight states of such irreps in a super Fock space. The results 
displayed in table 2 of the present paper are in complete agreement with the poles of 
the lowest-weight state normalization factors, given in appendix B of Schmitt er a1 
(1989) (however, not with the branching rule given in (3.2) of the same reference, 
where there seems to be a misprint). 

By applying (I5.22), (I5.23), (15.35) and  (I5.36), the so(4)Osp(2 ,R)  (triple) reduced 
matrix elements of the odd generators S- = ($3, 2 )  can be finally obtained. They are 
listed in appendix 4 both for the generic case where R > E, > iS21 + 1, and for the 
special cases where not all of these conditions are fulfilled. 

5. The osp(2/2N, R) superalgebras 

5.1. General remarks 

The even part of the osp(2/2N, R) superalgebra is the so(2)Osp(2N,  R) algebra, where 
sp(2N, R) is generated by D i ,  D", E , ) ,  i, j = 1 , .  . . , N, and so(2) is spanned by C. As 
reviewed in section 7 of I, the odd raising (lowering) generators I ,  and H ,  (G '  and 
J ' )  are the components of two separate s o ( 2 ) O u (  N)  irreducible tensors I and H ( G  
and J ) ,  and the same is true for the Grassmann variables U, and T,  (and  their 
corresponding differential operators a / a u ,  and a l a r , ) .  The positive discrete series irreps 
of osp(2/2N, R) are characterized by [ER) = [Efl,R, . . . R &,), where E E Z, and 
R ,  , . . . , R N  are integers satisfying the inequalities R I  3 f12 3. . .3 R > N .  We shall 
consider here both star and  grade star irreps corresponding to the adjoint relations 
I ,  = *(GI) ' ,  H, = * ( J ' ) & ,  or  to the grade adjoint relations I, = F(G')', H,  = + ( J ' ) ' .  

The Q polynomials are characterized by an so(2) irrep [ A ] ,  a u ( N )  irrep { p }  = 
{ p , p 2 . .  . p N } ,  and a row index y. Here 2 3 p 1  3 ~ ~ 3 . .  . 3 p h  2 0 ,  [ A ]  may run over 
those so(2) irreps contained in the 4 2 )  irrep { b }  = { b 1 ~ 2 J ,  i.e. A = p l  - p 2 ,  p I  - p 2 -  
2 , .  . . , -b,  + b 2 ,  and y may be taken as ( p ) ,  where ( p )  denotes a Gel'fand pattern of 
{ p } .  Hence the allowed { p }  irreps may be denoted by { p }  = {2k 1 ' - 2 k O } ,  where O G  1 G 2N, 
max(0, I -  N)G k G  [fl], and [ f l ]  is the largest integer contained in fl. For such an  
irrep, A runs over the range 1 - 2k, 1 - 2k - 2, . . . , 2 k  - 1. 

For given { p }  and [ A ]  irreps, the degrees of Q in a and in 7 are Xu = f (  1 + A ), and 
A"? = +( 1 - A ), respectively. Hence, the Q polynomials may be constructed as follows: 

- - - *  

by u ( N )  coupling a polynomial depending only on U with another one depending 
only on 7. Both of the latter transform under an  antisymmetric U (  N)  irrep, and their 
phase is fixed by choosing their highest-weight component as 

From (5.11, we find that the factors appearing in (17.14) and (17.15) are u2 = -a and 
w2 = -1, respectively. 
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Standard u ( N )  tensor calculus (Le Blanc and  Hecht 1987) enables one to obtain 
the u ( N )  reduced matrix elements of U and  7 between two polynomials (5.1) from 
those between two polynomials depending only on U or 7. The latter are given by 

( [ I  + 1]{ 1 ‘+l0}11 uil[I]{ 1‘0)) = ( [ - I -  1]{ 1‘-10}~~7/~[-1]{ 1‘0)) = m (5.3) 

and  the former by 

( [ A  + 1]{2k+11 ‘-zA-10}11~ii[A]{2k l’-zkO}) 

= (-1”’-A’’2[2(I-2k)]-1’’[( k + l ) ( I - h  -2k) ]”2  

( [A + 1]{2k 1 ‘ -zk+ lO} l /  ~ l l [ A ] { 2 ~  l’-2k0}) 

= ( - l )&[2(  -2k+2) ] - ’  2 [ ( 1  - k + 2 ) (  I +  A -2k  +2)]”’ 

( [ A  - 1 ]{ 2 1 ‘-2k-10} / /  7 I /  [ A  ]{ 2 1 

[2(1-2k)]-’”[(k+ l ) ( I + A  - 2 l ~ ) ] ” ~  I I - A  -2A 1’2  = (-1) 

( [A  - 1]{2k 1 ‘ - 2 k ~ ” 0 } ~ ~  711 [A]{2k l‘-2kO}) 

= [2( I - 2k + 2)]-”*[( I - k +  2)( I - A - 2 k +  2)]1’2. 

From (5.1) and (5.4), we also obtain the following reduced matrix elements: 

(5.4) 

From the latter and (16.22), (16.26) and (17.14), we can then determine the reduced 
matrix elements of r ( ’ ) ( D * )  appearing in the recursion relations (17.5) and (17.6). 

Hence, the only unknown quantities equations (17.5) and (17.6) may still contain 
are u ( N )  Racah coefficients of the type U({ ” } {g } {w ’ } {p ’ ’ } ;  { w } c { g ’ } ~ ’ ) ,  where {g”} = 
{lo}, (26) or {120}, since the latter appear in relations such as (15.24) and (16.26). In  
the next two subsections, we shall consider two examples wherein they are known, 
and  hence the recursion relations for EX’ can be explicitly written down and solved. 
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5.2. The most degenerate irreps of osp(2/2N, R) 

Whenever R I  = . . . = R, = R so that the osp(2/2N, R) irrep may be denoted by [Zh), 
the above-mentioned Racah coefficients are equal to 1 for allowed u ( N )  irreps, and 
0 otherwise. In such a case, the orthonormal V B B  basis states reducing the stability 
subalgebra s o ( 2 ) 0 u (  N )  can be written in shorthand notation as I[(](w){ v } p { h } , y ) ,  
where the allowed so(2) and sp(2N, R) irreps are, respectively 

[[]=[=+A] ( w ) = ( ( R + 2 ) k ( R +  1)'-lkh) 0 s  1s 2 N  

max(0, l -  N)  c k s [ill 
(5 .7 )  

The irreps [ A ]  and { p }  = {2kl'-2k0}, entirely determined by [5] and { U } ,  have been 
dropped as well as the unneeded multiplicity label 5. 

Since their rows and columns are labelled by t = [A]{p}, all Yt([[]{w}) submatrices 
are one dimensional. The recursion relations (17 .5)  and ( I7 .6) ,  satisfied by XY' ' ( [[] (w}) ,  
take the following simple form: 

A=I-2k,  I - 2 k - 2  , . . . ,  2k-I. 

where 

or 

6, = 6- = * 1  ( 5 . 9 )  

6, = -6 -  = *(-1)' (5 .10)  

according to whether one considers star or grade star irreps. 

immediately ruled out, because the condition 
Let us first review the case of star irreps. The lower sign choice in (5 .9 )  can be 

3'tX7([Z* 1]{R+ lfi})=-(R+E)Yt,7P([Z]{h))~O ( 5 . 1 1 )  

cannot be fulfilled. For the upper sign choice, we obtain the positive semi-definite 
solution 

k n ( 2 0  + s - 1 + 1)-1(2R - s + 3) 

(5.12) 

where [5] and { w }  are given in (5.71, if and only if the condition 

R 2 p (5 .13 )  

is satisfied. The irrep [Eh) is then equivalent to a star representation. 
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From (5.12), is clear that if R -  N + 1  >]El, then all the V B B  basis states 
1[[](w){O}{w}x), corresponding to the allowed irreps (5.7), are mapped onto vcs basis 
states. In such a case, the branching rule for the decomposition of [SA) into a direct 
sum of so(2)Osp(2N, R) irreps [ 5 ] 0 ( w )  is given by 

[Eh)LY 1 1' 0 ([ Z + A]@ ((a + 2)'((R + l ) ' - 2 h d ) )  (5.14) 

where the prime on the summation symbol over A means that the summation only 
runs over even or odd numbers according to the parity of I-2k. 

On the contrary, if R - q = IZI, where q is some integer such that 0 s  q c N - 1, 
then the V B B  basis states ~[[](w){O}{w}x) corresponding to I ,  k and A values satisfying 
the conditions 

21 I - 2 k  

1=0 h = m d x ( O . l -  % 1 A = 2 k - I  

1 3 q + l  k s l - q - 1  *A 2 2 q S 2 -  / (5.15) 

are mapped onto the null vector. In (5.15), the upper (lower) sign applies to the case 
where R - q = Z  ( -Z) .  The corresponding so(2)@sp(2N,R) irreps have to be elimi- 
nated from the branching rule (5.14), which therefore becomes 

q [ i  21 1-21 

[*(n-q)h)J 1 1' O([* (n -q+A)30( (R+2)k (R+l ) " "h ) )  
1=0 1 = 0  A - 2 h - I  

I = q + l  L = l - q  A = Z k - i  

\+q miniq .1-q-11  2 q - I  

I = q + I  h = m a x ( O , l - C )  A = ? L - i  
+ 1  1 z' @ ([ *( 0 - + A ) ]  0 ((a + 2) (0 + 1 ) i -2AA)) .  

(5.16) 

Finally, by using a relation similar to (2.14), the u(N) reduced matrix elements 
(17.9) and (17.10) of the odd generators between two lowest-weight s o ( 2 ) 0 u ( N )  irrep 
basis states can be easily obtained. In appendix 5 they are listed for the generic case 
where R - N + 1 > 1x1. The results also apply whenever R - q = 151, 0 N - 1, 
provided only the allowed vcs basis states are retained. 

In the osp(2/2, R) case, the irreps [ZR) considered in the present subsection are 
the most general positive discrete series irreps. The solution (5.12) becomes 

q 

x Y l - (  [ E * 1 I{ n + 1 } )  = R T a 
YfK([E]{R+2}) = R - ' ( R +  l ) ( R - E ) ( R + E )  

(5.17) 

for R 3 151. The branching rule for the decomposition of [ER) into so(2)@sp(2, R) 
irreps can be written as 

(5.18) 

From the u(1) reduced matrix elements of the odd generators given in appendix 5, 
sp(2, R) (triple) reduced matrix elements can be obtained by applying (15.35) and 
(15.36) to the two separate sp(2, R) irreducible tensors f = ( I ,  J )  and .&'= (H, G). The 
results are also listed in appendix 5. They agree with those obtained by Balantekin et 
al (1989) from a direct resolution of the supercommutation relations (except for a sign 
in the fifth relation contained in their equation ( A . 8 ~ 1 ,  where there is a misprint). 
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Let us next review the case of grade star irreps. According to ( 5 . 7 ) ,  for any N value 
there are V B B  basis states 1[5](w){O}{w}x) characterized by the s0(2)@u( N )  irreps 
[5]@{w}=[E]@{h}, [ Z * l ] @ { R + l h } ,  and [ 5 ] @ { R + 2 h } .  From ( 5 . 8 ) ,  they give 
rise to the following recursion relations: 

XYl-( [E + 1 ] { R + 1 h } ) = * (R - E) YlYC( [ E ] { h} ) 
XYl"([E-l]{R+ liz}) = T(n+E)YlYl-([E]{h}) 

YlYl'([5]{R+2h}) = *n-'(n+ l ) ( n + E ) Y m ' ( [ s +  l]{R+ liz}) 

YlYl-([E]{n+2h}) = F R - ' ( R +  l)(R-E)YlYl+([z- l ] { R + l h } )  

(5.19) 

where the upper (lower) signs correspond to the upper (lower) sign in (5.10). Equations 
(5.19) have the positive semi-definite solution 

X?l+( [E * 111 n + lh}) = n F 5 = 2R 
YlYl- ( [ Z T 1 ] { R + 1 0 ) )  = X Y l "  ( [ E]{ R + 2h}) = 0 

(5.20) 

if and only if R = r E . .  For N =  1, there are no other allowed VBB basis states 
l[[](w){O}{w}x). For N s 2 ,  there are some, among which are states corresponding to 
the irreps [E+2]@{(R+l) 'h}.  The latter give rise to the relation 

(5.21) 

For R = FE, the right-hand side of (5.21) is negative definite. We conclude that the 
only osp(2/2N, R) irreps [Zh), which are equivalent to grade star representations, are 
the irreps [-an) or [RR) of osp(2/2, R), according as one chooses the upper or lower 
sign in (5.10). 

For such irreps, it results from (I7.9), (17.10) and from relations similar to (15.35) 
and (15.36) that the sp(2, R) reduced matrix elements of 9 are given by 

([-a+ 11(0+ ~ ~ l l l Y ~ ~ ~ l l l ~ - ~ l ~ ~ ~ ~  = - w2 (5.22) 

Ym-( [ Z r 2]{ (0 + 1)%}) = -( R T 5 - l)XYl-( [ E * 1]{R + lh}) .  

(5.23) 

Comparison with (A5.4) and (A5.6), where E = -R and E = R respectively, shows that 
the osp(2/2,R) irreps [-an) and [RR) are at the same time equivalent to both star 
and grade star representations. 

5.3. The osp(2/4, R) superalgebra 

For the osp(2/4, R) irreps [SRIRz) ,  all reduced matrix elements can be expressed in 
terms of u(2) Racah coefficients, so that the recursion relation for YLX' can again be 
explicitly written down. Since the case where R I  =a2 was treated in the previous 
subsection, we shall assume here that 0, is greater than R 2 .  

In shorthand notation, the orthonormal V B B  basis states reducing the stability 
subalgebra s 0 ( 2 ) 0 u ( 2 )  can be written as I { p l p 2 } [ S ] ( w 1 w z ) {  v ,  v2}{hlh,}X), since the 
so(2) irrep [ A ]  is determined by [5] through the relation 

A = ( - E  (5.24) 
and all couplings are multiplicity free. The allowed irreps [5 ]  and ( w I w J  are listed in 
columns 1 and 2 of table 3, and the conditions for their existence are displayed in 
column 5 of the same table. The latter result from the coupling rule of the angular 
momenta $(RI  --a2) and $ ( p l  - p 2 )  to total angular momentum $(a, - U , ) .  
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Table 3. Branching rule for the decomposition of an osp(2/4, R )  star irrep [ 5 R l R 2 )  with 
0 ,  >R, into so(2)@sp(4,W) irreps [ t l @ . ( w l w z ) .  

[ t l  ( W I W 2 )  [AI {cllP.z} V B B  conditions vcs conditions 

[SI 
[ E +  11 
[ Z f  I] 
[Z-11 
[E-11 
[ 5 + 2 ]  
[El 
[El 

[51 
[E-21 
[ E + I ]  
[E+ I ]  
[Z- I ]  
[E-13 
[51 

Rz-1#E,-5. i  
RI- 1 f 5 ,  - E  
R 2 -  1 # -Z  
R 2 - l # E  
n,- 1 #E, -5 
R 2 - 1 # - E  
n2- 1 # E, -5 
R 2 -  1 f E, -5 

t Condition valid for eigenvalue d ,  
$ Condition valid for eigenvalue d, 

Since their rows and  columns are labelled by t =[h]{plp2}, all X ( [ ( ] { w l w 2 } )  
submatrices are one dimensional, except for X([E]{n, + 1R2+ 1)) which is two 
dimensional. In the latter case, we shall abbreviate t by t = (20) or { 1 l}. The recursion 
relations (17.5) and (17.6) give rise to forty equations, which have to be satisfied by 
sixteen unknowns. 

Let us first review the case of star irreps. Among the forty equations, let us quote 
the following four: 

corresponding to s 0 ( 2 ) 0 u ( 2 )  irreps [ ( ] O { w , w , }  for which VBB basis states 
~ { p l ~ 2 } [ ~ ] ( w l w z ) { O O } { w l w , } ~ )  always exist. For the lower sign choice, these four 
equations have no  positive semi-definite solution, whereas for the upper sign choice 
such a solution does exist if and only if 

n, - 1 2 IEI. (5.26) 

It can be easily proved that in the latter case the remaining equations also have a 
positive semi-definite solution whenever condition (5.26) is satisfied. 

Tile solution to the whole set of equations is 
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= (0 ,  +a,- 2)- ' [R, (nz  - l ) ( n ,  + R ,  - 2 )  -(a, +n,)E21 

(Yl-Yl-A([El{Rl + In,+ 1))){2"),{lli (5.27) 

= ( R I  + n, - 2)- '(R, + R2 - l ) E [ ( R ,  - R,)(R, -R, + 2)1"2 

Y L Y l - - ( [ Z ] { n , a z + 2 } ) = ( n , - l ~ - ' R ~ ~ R z + 3 - l ~ ~ n , - ~ - l )  

XYL'([E*1]{n,+2n,+ 1)) 

Yl-XL([E* l]{R,+ 1s12+2)) 

YLx-([ Z]{R, + 2R2 + 2)) 

= [ n , ( n , + R 2 - l ) ] - ' ( n , +  l ) ( n , + n , ) ( a , + z ) ( a ,  -E)(f l ,+E- 1) 

= [(cl,- l)(.n, +a,- l)]-Yl*(n, +nz)(n, FE) (n ,+E  - l ) ( R 2 - E  - 1) 

= [ 0 , ( R 2 -  1) (R,  +a,- l ) I r 1 ( R l  + l)Rz(fL, +a,+ 1) 

x (a, + Z)(n, -=)(a,+ 3 - l)(n, - E - 1). 

To check that the 2 x 2 matrix YLYC-([E]{Cl, + la,+ 1)) is positive semi-definite whenever 
condition (5.26) is fulfilled, it is sufficient to show that its trace and its determinant 
are not negative. From (5.26) and (5.27), it follows that 

tr YCX+([E]{R, + laz+ 1)) = 2 ( n I  +.~z-2)-'(n, +a,- l ) [ ~ , ( n z -  1) -E2] 2 0  

det YLX([E](R, + l Q 2 +  1)) 

= (n, +n, -2) - ' (R,  +f l , ) (Rl2  -E')[(n2 - l ) * - P ]  s o .  
(5.28) 

Whenever condition (5.26) is satisfied, and only in such a case, the irrep [E:RlR2) with 
CL, > R, is therefore equivalent to a star representation. 

If a,- 1 > 191, then all the VBB basis states ~ { ~ l ~ 2 } [ ~ ] ( w l w z ) { O O } { w l w , } ~ )  are 
mapped onto vcs basis states. For [5] = [E], ( w I w 2 ) =  ( R I  + lo2+ l ) ,  it is necessary to 
determine the matrices Yl-([E]{n, + la,+ 1)) and  Y'-1([Z]{i21 + l a , +  I}) by diagonaliz- 
ing the 2 x 2  matrix YLYL"([E]{R, + l a , +  1)) and using (15.16) and (15.17). The eigen- 
values of the latter can be expressed as 

d13z= (a, +a, -2)-'{(QI +a,- l)[Rl(Rz - 1) - Z2] * A }  (5.29) 

where d ,  (respectively, d,) corresponds to the + (respectively, -) sign, and  

A = {[Q,(SZ, - 1)  + E2]* + (0, - n,)(fl, - R2+2)(Rl  + Rz - l)232}"z. (5.30) 

The (real) unitary matrix U converting YLYL-([E]{fll + la2+ 1)) to diagonal form is 
given by (4.19), where 

COS 4 =-(E/lZl)(2A)-' ' [ - n , ( n ~ - 1 ) - E 2 + A ] ' "  

sin ~=(2A) -1 '2 [R , (Rz-1 )+E: '+A]" ' .  
(5.31) 

On the contrary, if R, - 1 = IEI, then as shown in column 6 of table 3, some linear 
combinations of VBB basis states ~ { ~ l ~ z } [ ~ ] ( w l w 2 ) { O O } { w l w z } ~ )  are mapped onto the 



5430 C Quesne 

null vector. For [5] = [E]  and (wIw2)  = (0, + lo2+ l), the eigenvalue d2 vanishes, so 
that only the eigenvector of YCK’([E]{n, + la2+ 1)) corresponding to 

d ,  =2(f11 +Cl ,  -2)-’(fl2 - l)(n, +R2 - l)(n, -n,+ 1) (5.32) 

has to be retained. According to (15.18), (4.19) and (5.31), it is given by 

Il[*(fl2- 1)1(f l ,+lf l2+ l){OO}{fi,+ 1)x) 
=[2(R,-n2+1)]-”’  

x{*(n,-n,)”~~{20}[~(n,-l)](n,+ln,+l){oo}{~,+l~~+ l j x )  

+(n, -n2+2)l’*1{11}[*(fl2- l)](fl,+ ln,+l){oo}{n,+ 1n2+ 1}x)}. 
(5.33) 

In general, the branching rule for the decomposition of [Efl,sZ,) into so(2)Osp(4, R) 
irreps can be obtained by combining the VBB and vcs conditions listed in columns 5 
and 6 of table 3. 

Finally, by applying (17,10), the u(2) reduced matrix elements of the odd raising 
generators Z and H between two lowest-weight s0(2)0u(2)  irrep basis states can be 
easily obtained. In appendix 6, they are listed both for the generic case where R I >  
SZ, + 1 > 151 + 2, and for the special cases where not all of these conditions are fulfilled. 

Let us next review the case of grade star irreps. Among the forty equations satisfied 
by Y~?~?([(]{o~w~}), let us quote the following four: 

Ytrt’([E+ l]{n,  + la,}) = *(a1 -5)Ym7([s]{n,n,}) 

YLYP([E - l]{nn, + In,}) = +(a, + E)YTcYf+([s]{nlf12}) 

Ym’( [ z + 2]{& + la, + 1)) = +( n, - 5 - l)YTcYl+( [ 5 + l]{R1 + In,}) 
Y~Y~~( [z -2 ]{n ,+ ln2+ l}~=i (n2+z- l )~~~( [~ - l ]{n ,+ ln*})  

(5.34) 

corresponding to s0(2)0u(2)  irreps [(]0{w,w2} for which VBB basis states 
/ { p l p 2 } [  ~](wlw2){OO}{w,w2}x) always exist. No positive semi-definite solution does 
exist for any sign choice. We therefore conclude that no osp(2/4,R) irrep [Sfl,n,) 
with R I  > n2 is equivalent to a grade star representation. 

6. Concluding remarks 

In the present paper, we did illustrate with various examples the power of the vcs and 
K-matrix combined theory for constructing matrix realizations of the osp( P/2 N, R) 
positive discrete series irreps. The cases considered here are only part of those amenable 
to a full analytic treatment. Among them, let us mention the most general irreps of 
osp(3/4, R) and osp(4/4, R), for which the determination of reduced matrix elements 
only makes use of u(2) Racah coefficients. To provide all the information required to 
treat those cases as well, we presented the calculation techniques in a more general 
framework than was necessary for dealing with the examples actually worked out. 

From the few examples here considered, some general trends already emerge very 
clearly. Considering grade star representations is almost useless. Such representations, 
which in principle might exist for any osp(2/2N, R) superalgebra, were in fact only 
found for osp(2/2,R). In addition, the few grade star representations encountered are 
at the same time equivalent to star representations. On the contrary, a great variety of 
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star representations were shown to exist. By analysing the results obtained for them, 
we may conjecture that a necessary condition for an osp(P/ZN, R) positive discrete 
series irrep [;a)= [ E l  . . . E w O , .  . -0 , )  to be a star representation is 0 ,  lZll, and 
that a necessary and sufficient condition for such an  irrep to be typical is 0 , - N + 1 > 

In the present series of papers, we restricted ourselves to those osp(P/2N,  R)  irreps 
which can be induced from the direct sum of an  so( p )  (true) irrep and of an  sp(2N, R) 
positive discrete series irrep. It is obvious that the same kind of techniques would 
apply to the cases of a n  so( p )  spin irrep or of an  sp(2N, R) negative discrete series 
irrep. Whether they may be used if one considers any harmonic series irrep of sp(2 N, R) 
is not very clear yet. In particular, the case of the so-called mock-discrete irreps (King 
and  Wybourne 1985), for which the vcs measure determined by Quesne (1986) is not 
valid (see also Perelomov 19771, would need some further investigation. 

1x11. 
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Appendix 1. Reduced matrix elements of irreducible tensors for osp( l /2N,  R) 

The purpose of the present appendix is to give explicit expressions for the reduced 
matrix elements of the irreducible tensors appearing in the recursion relation (15.1 1)  
for Y‘X-((w}) in the osp ( l /2N,  R) case. Since r : ” ( D - )  vanishes and since the reduced 
matrix elements of [r“’(3)]-, r“’(@), r ’ ” ( D - )  were given in (16.14), (16.15), (16.20) 
respectively and  assume an  explicit form when (2.7) is taken into account, it only 
remains to consider the reduced matrix elements of F”(@) and T y ’ ( D - ) .  

By using (15.25) and  the relation u I  = 1, as well as some results of Hecht et a1 
(1981) and Le Blanc and  Hecht (1987), equation (16.21) can be written as 

((w”){20bJ’}llr11 ‘(6) Il(w){O}{w}) 

= (-1)I-Y (0, - flP\ + p 7  - i + 1 ) ( 0 ,  - nPb + p c  - i)-’ 

( A l . l )  

Here { U } ,  { w ’ }  are given by (2.8), and { w ” }  by (15.13) where j = p 5 ,  thence 

{ w ” } = { i l + A “ - ” ( p 1  . . .p,-lpc+l. . .p/)}.  (A1.2) 

The reduced matrix element of T F ’ ( D ’ )  is given by (16.22), where, 
from (16.12) and (2.1), i t  results that w l  = -1. On the right-hand side of (16.22), 
the only quantity remaining to be determined is the reduced matrix element 
( ( u ’ ) { O } { w ’ } ~ ~  Q “ ‘ ” ( ~ ) l l ( w ” ) { O } { w ” } ) .  In the present case, equation (16.26) is useless for 
such a purpose because it contains an unknown U (  N)  Racah coefficient. This difficulty 
can be circumvented by writing @1,291(5) as (Biedenharn and Louck 1968) 
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Then standard U( N )  tensor calculus leads to the following result: 

((w’?{O}bJ’}Il Q‘i20’(5)  II(””U”}) 

x ((a{@{ o) \I 511 (w’” 7 )  (Al.4) 

where the summation runs over {o} = {U}, { w  + A c i ) (  i )  - A(’)(j)}. By taking (2.7) and  
some results of Le Blanc and  Hecht (1987) into account, equation (A1.4) can be 
rewritten as 

((w’?{OI{w’l I1 Q“201(s) ll(w’t?{O1{w‘f}) 

where 

i f j s i  
if j <  i. 

S ( j  - i )  = (Al.6) 

(A1.7) 

Appendix 2. Recursion relations for X X t ( [ ~ l {  U } )  in the osp(3/2, R) case 

The thirteen recursion relations for XX’([5]{w)), where [5] and {U} run over the so(3) 
and  u(1) irreps listed in columns 1 and 2 of table 1, assume the following form: 

XYP([Z+ l ]{ f l+ l} )=  * ( n - 3 x Y f i ( [ q { n } )  (A2.1) 

XYP([E]{R+ 1)) =*(a+ l ) ? W ( [ s ] { n } )  (A2.2) 

~ ~ ~ ~ ‘ ( [ E - l ] { R + 1 } ) = + ( n + s + l ) ? ~ ~ ~ ~ ( [ ~ ] { n ) )  (A2.3) 

Yfxt([E+l]{R+2})= *(n+l)Ym+([st l]{R+l})  (A2.4) 

YC7ft([q{SZ+2}) = I K ’ ( R +  l ) ( R + Z t  l)XYf([Z+ l ] { n + l } )  (A2.5) 

XYl+([E+ l]{n+2})  = *(n-E)Yfx’([z]{n+ I}) (A2.6) 

YCK‘( [ Z]{ R + 2)) = (A2.7) (0 - Z) (R + E t l ) X Y f T  ([SI{ SZ + 1)) 
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r~X’([E-l]{n+2})=+(R+E+l)XX~([31{R+ 1)) (A2.8) 

.7trtL([E]{R+2})= * R ~ l ( R + l ) ( R - E ) ~ ~ t ( [ ~ - l ] { R + l } )  (A2.9) 

XY~’([E-l]{R+2)) =*(a+ l )X.xt([z- l ]{R+l})  (A2.10) 

XXt( [ E]{ R + 3}) = * (0 + l)-’( R + 2) (R + E + 1 ) X Y l - (  [ E + 1 ]{ R + 2)) (A2.11) 

XX’( [ E]{ R + 3)) = * (R + 1) -‘R (R + 2)XXt( [ E]{R + 2)) (A2.12) 

XK( [ E] { R + 3)) = * (R + 1 ) - ( R + 2) (R - Z ) XX-( [ Z - 1 ] { R + 2)). (A2.13) 

Appendix 3. Triple reduced matrix elements of the osp(3/2, W) odd generators 

In the generic case corresponding to R > E > 0, the so(3)Osp(2, R) (triple) reduced 
matrix elements ( [ 5 ’ ] ( w  + l )~~~y(X)~11[~](w))  of the osp(3/2, R) odd generators are given 

(A3.1) 

(A3.2) 

(A3.3) 

(A3.4) 

(A3.5) 

(A3.6) 

(A3.7) 

(A3.8) 

(A3.9) 

(A3.10) 

(A3.11) 

(A3.12) 

(A3.13) 

The remaining non-vanishing reduced matrix elements ([&‘](U - l ) ~ ~ l y ( ~ ) l ~ ~ [ . $ ] ( w ) )  
can be obtained from them by using the symmetry relation 

([5’l(w - 1 ) l l l Y ( ~ ) l l l [ ~ l ( ~ ) )  

(A3.14) 
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Appendix 4. Triple reduced matrix elements of the osp(4/2, R) odd generators 

In the generic case corresponding to R > El > IF2/+ 1, the so(4)Osp(2,  R) (triple) 
reduced matrix elements (r’[515il(w + l)ll~r(€)~~lr[5152](w)) of the osp(4/2, R) odd 

(A4.1) 

(A4.2) 

(A4.3) 

(A4.4) 

(A4.5) 

(A4.6) 

(A4.7) 

(A4.8) 

(A4.9) 

(A4.10) 

(A4.11) 

(A4.12) 

(A4.13) 
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( [ S I 3 2  * l I (R  + 3 ~ ~ ~ l Y ~ € ~ l l l ~ ~ ~ l ~ * l ~ ~  + 2)) 

= *[2( E, 7 Z2)(  E] * E2 + 2)]-”2[ (R - Z1)(R + El  + 2) (R  7 El + 1 

x {[(El +El)(El  -E>)]i  ’( r t - ’ ( [5 ,E2]{n+2)))[ ,  

+ [ (El  + E, + 2 ) ( 5 l  - 5 2  + 2)]1’2( X-’( [Z:,E:z]{R + 2}))[, (A4.14) 

( [E~E: , I (R+~)~~(Y(Z)~(~[E : ,  * l E , l ( a + 3 ) )  

= -[(si + s*+ l ) (E l  -E*+ 1)]-1!2 

x [ ( E 1 + E 2 +  1 * l ) ( E ,  -z2+ 1 * l ) ( R * E l +  l *  1 ) y 2  (A4.15) 

~ ~ ~ l ~ l i ~ ~ + ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ l ~ 2 ~  i i ( n + 3 ) 1  

=[(El+E2+1)(El-E2+1)]-1’* 

x [ ( ~ l F E l ) ( 5 1 * E ~ + 2 ) ( R ~ 3 , + 1 ) ] i ’ 2 .  (A4.16) 

In (A4.7), (A4.8), (A4.13) and  (A4.14), the upper (lower) signs correspond to r =  1 
( r = 2 ) ,  and  the matrix elements of X([ElEl]{R+2}) and  X-’([S,E2]{R+2}) result 
from (15.16) and (15.17) when one takes (4.17)-(4.20) into account. 

The remaining non-vanishing reduced matrix elements 

( r ’ [  5 I til( w - 1 ) I l l  Y ( 2 ) I1 I r [  51 521 ( w ) 1 
can be obtained from those listed above by using the symmetry relation 

x ( r [ 5 l s 2 l ( ~ ) I l l Y ( ~ ) l l l ~ ’ [ 5 1 5 ~ 1 ( ~  - 1)). (A4.17) 

In those cases where one of the conditions R > E l ,  E, > IS21 + 1, or both, are not 
fulfilled, equations (A4.1)-(A4.6), (A4.9)-(A4.12), (A4.15), and (A4.16) remain valid 
provided the matrix elements corresponding to forbidden states are left out. The same 
is true for (A4.7), (A4.81, (A4.13) and  (A4.14) whenever R >  5 ,  = 

Whenever R = E l  > ]E l l ,  equation (A4.14) disappears while equations (A4.7), (A4.8) 
and (A4.13) are replaced by 

1. 

(1[51E2](5]  + 2 ) l l ~ y ( r ) ~ ~ ~ [ E l  - 15*1(5 ,+  1)) 

~ ~ ~ = i ~ 2 l ~ ~ l + ~ ~ l l l Y ~ ~ ~ l l l ~ ~ l ~ * *  11(51+ 1)) 

( [ = I  - 1s21(5,  + ~ ~ l l l Y ~ ~ ~ l l l l ~ ~ l ~ 2 l ~ ~ i  t-2)) 

= E 2 J Z [ ( E , + 1 ) ( E l + E , + 1 ) ( E l - ~ : 2 + 1 ) ] - ” 2  (A4.18) 

= T(El*E2+ l)-l’*[(z1 *E2)(Ei *Z2+2)]I’2 (A4.19) 

= [ ( 5 ,  + El)(El - 52)]-1’2[23 ,( E l  + 5 2  + 1)( E l  - E2 + l)]I’*. (A4.20) 

Whenever0  > El  = 1E21, equations (A4.7), (A4.8), (A4.13) and  (A4.14), respectively, 
become 

~ ~ ~ l * ~ l l ~ ~ + ~ ~ l l l Y ~ ~ ~ l l l ~ ~ l +  1 * E , l ( R +  1)) 

= - [ (2E1+ l ) ( n +  1 ) ] - ” ‘ [2E1(R+2) (R+E1+ l)]I’2 ( A4.2 1 ) 
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Appendix 5. Reduced matrix elements of the osp(2/2N, R) odd generators for the most 
degenerate irreps 

In the generic case corresponding to fl - N + 1 > \El, the U (  N )  reduced matrix elements 
of the osp(2/2N, R) odd raising generators between two lowest-weight s o ( 2 ) 0 u ( N )  
irrep basis states of the [Eh) star irrep carrier space are given by 

([5* l I ( w + A ‘ ” ( k +  1)){OHw+A(”(k+ ~ ) > ~ ~ Y ( X ) / I [ ~ I ( W ) { O } { ~ } )  
- (- 1 ) ( !-A - k r  k ) / 2 1  - *[(2R- I +  l ) ( I -2k ) l - l ’*  

x [ ( k +  1)(2R - k + 2 ) ( I T A  - 2 k ) ( 2 n T 2 5  - I F  A)]” ’  (A5.1) 

([5* 11(w + A “ ) ( / -  k +  l)){OHw + A ” ’ ( I - -  k +  ~ ) } ~ I Y ( X ) I I [ ~ I ( ~ ) { O } { ~ } )  

= (-1) ‘kfk”2i [ (2f l  - I + 1)( I - 2k + 2)]-”* 

X [ ( I  - k + 2 ) ( 2 R  - I +  k +  1)( I *  A - 2 k + 2 ) ( 2 n T 2 Z  - I T  (A5.2) 

where X = Z (respectively, H )  for the upper (respectively, lower) signs, [5] = [ E +  A ] ,  
and  (o~)=((S1+2)~(f l+l)‘-~~h) .  

The reduced matrix elements of the odd lowering generators can be obtained from 
those of the raising generators by using the symmetry relation 

([5 - ~ l ( ~ ’ ) { O H w ’ ~ l l  r (c )11[5 l (w){O){~H 

x ([51(4{OHw)lI 74Z) l l [5 -  ~ I ( w ‘ m ~ ’ H  (A5.3) 

and  a similar relation connecting y ( J )  with y ( H ) .  The phase factor cp({w) )  has been 
defined in (15.26). 

For osp(2/2,  RI, the sp(2, RI (triple) reduced matrix elements of the odd generators 
J = ( I ,  J )  are given by 

(A5.4) 

(A5.5) 

(A5.6) 

(A5.7) 

([E + 1](n  + l ) ~ ~ ~ y ( 9 ) ~ ~ ~ [ 5 ] ( n ) )  = -n-”’[(n - l)(n - 5 ) ] 1 ’ 2  

([E](n+2)1//y(4)111[2- l](fl+ 1)) = (fl-S)”2 

( [ E ] ( n ) ~ ~ ~ y ( 9 ) / ~ ~ [ E  - l](n+ 1)) = (O+E)”2 

([E + 1](n  + l ) ~ ~ ~ y ( 9 ) ~ / ~ [ E ] ( ~ +  2)) = n-’’*[(n + 1 )(n + 
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Those of &‘= (H, G) can be obtained from them by using the symmetry relation 

(Et- ~ l ~ ~ ’ ~ l l l Y ~ ~ ~ I 1 1 ~ 5 1 ~ ~ ~ ~  = - (A5.8) 

resulting from the property 5Yq = ( &)-, q = $, -4. 
w ’ -  1 

Appendix 6. Reduced matrix elements of the osp(2/4, R) odd generators 

(A6.10) 
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([s.i i ] ( n ,  + 1~,+2){O}{n, + l n z + 2 j l / y ( ~ ) / / r [ ~ ~ ( ~ , +  1n2+1){O){G+ I%+ 1)) 

=[2( f lz - l ) (R,  - n 2 ) ( R , + n z - l ) I - l  
x [ R , ( R , + n , ) ( R 1 ~ ~ ) ( R , + E -  1 ) ( 0 2 - Z -  111’ 

X{T(R, - n , + 2 ) ” * ( T t - ’ ( [ ~ l { n , +  1 n z +  1}))(2Oi,r 

-(a, -R,)1’2(71-1([El{nl + 1Rz+ 11))(11, (A6.11) 

([E * l ] ( n ,  + la, +2){O}{n, + 1n2+ 2111 Y(X) lI[El(n,n,+ 2){o>{nln2+ 21) 

=*[(a, -nJ(nl+Rz- 1)1-1 

x [ (RI  -0,- l ) ( n , + n J ( n ,  TE)Il (A6.12) 

([ET l ] ( n ,  +212,+ l){o){n, +2&+ l ~ ~ ~ y ~ x ~ ~ ~ [ E ~ 2 l ~ n l +  I n , +  l){o}{a + I Q ? +  11) 

([SF l](n,+ln,+2){O}{n,+ln,+2~~(y~X~~l[E:21~~,+~~,+~)~~~~~~,+~~~+~~~ 

( [ s ] ( n ,  + 2 n ,  + 2){0}{n, + 2n2+ 2}/1 y(X)Il[E 7 l l ( n ,  + 7 - 0 2  + 1){oHn, + 2n*+ 1)) 

= [ n 1 ( R 1 + n , - 1 ) ] - ’  2[(n,+l)(n,+n,)(n,FZ:)1”2 (A6.13) 

= [(cl,- l ) ( n , + n , -  1 ) ] - ” 2 [ n 2 ( n l + R , ) ( n 2 + ~ -  1)l’ (A6.14) 

=[(a,- l)(Sz, -a,+ l ) ( n l + n * ) l - 1 ’ 2  

X [ R z ( R l - n 2 + 2 ) ( R l + R 2 + 1 ) ( R 2 + ~ - 1 ) 1 1 ’ 2  (A6.15) 

([ E](R 1 + 2R, + 2){ O } {  R 1 + 2% + 2) / I  y ( X )  I (  [E F 1 I(n 1 + 102 + 2 ) I m n l +  1 n, + 2)) 
= -[n,(n, -nz+ l)(nl+n,)]-1’2 

x[(R,+l)(n,-n2)(n,+n,+l)(0,*:~1’ ( A6.16) 

where X = Z (respectively, H )  for the upper (respectively, lower) signs. 
In those cases where one of the conditions R I  > s2,+ 1, C12- 1 > (SI, or both, are 

not fulfilled, equations (A6.1)-(A6.5), (A6.8), (A6.9) and (A6.12)-(A6.16) remain valid 
provided the matrix elements corresponding to forbidden states are left out. 

Whenever a, > 0, and R2 - 1 = IZI, equation (A6.11) disappears while equations 
(A6.6), (A6.7) and (A6.10) are replaced by 

(l[*R,+ l-j(n,+ In,+ l){o}{n,+ In,+ l } ~ ~ y ( x ) l l [ * n , ~ 2 l ( n , +  1n,){o){n,+ln2H 

(1[+R,* l l (RI+ I n , +  l){O){n,+ 1n2+ ~ ~ ~ l Y ~ ~ ~ l l ~ ~ ~ 2 l ~ ~ l +  1fi2){O}WI+1fbl) 

( l [ + n , F  1 ] ( 0 , +  I n , +  l){O){n,+ lR,+l~l~Y(X)11[*~~*~1(~,~,+ l){oHnlQ2+ 1)) 

= [(Q, + n , - 2 ) ( R ,  -a,+ 1)1-1’2[2(R*- 1 ) p 2  ( A6.17) 

= (a, +a2 -2)-l ’[2(R, - l ) ( n ,  +n, - l)],’, (A6.18) 

= - [ ( n l + n , - 2 ) ( R ,  -a,+ l)]-”* 

( [ r n , + 2 l ( n , + 2 n , +  1){oHn,+2n2+ l)llY(X) 

X [ ( n , + n , -  l ) ( n ,  -n,)(n, -R2+2)]”’ (A6.19) 

x /I l[+R2* l](n,+lR2+1~{O}{n,+ln,+1}) 

= - [ R , ( n I + n , - l ) ( n ,  -R2+2)1-”2 

x [ (RI  + 1)(R,  +R,) (R,  +R,-2) (R,  -a*+ 1)]1’2. (A6.20) 

In all the cases, the reduced matrix elements of the odd lowering generators can 
be obtained from those of the odd raising ones by using relations similar to (A5.3). 
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